Multivariate Log-Concave Distributions as a Nearly Parametric Model∗
نویسندگان
چکیده
In this paper we show that the family P d of probability distributions on R d with logconcave densities satisfies a strong continuity condition. In particular, it turns out that weak convergence within this family entails (i) convergence in total variation distance, (ii) convergence of arbitrary moments, and (iii) pointwise convergence of Laplace transforms. In this and several other respects the nonparametric model P d behaves like a parametric model such as, for instance, the family of all d-variate Gaussian distributions. As a consequence of the continuity result, we prove the existence of nontrivial confidence sets for the moments of an unknown distribution in P d . Our results are based on various new inequalities for log-concave distributions which are of independent interest.
منابع مشابه
Non-parametric log-concave mixtures
Finite mixtures of parametric distributions are often used to model data of which it is known or suspected that there are subpopulations. Instead of a parametric model, a penalized likelihood smoothing algorithm is developed. The penalty is chosen to favor a log-concave result. The standard EM algorithm (“split and fit”) can be used. Theoretical results and applications are presented. © 2006 El...
متن کاملInference and Modeling with Log-concave Distributions
Log-concave distributions are an attractive choice for modeling and inference, for several reasons: The class of log-concave distributions contains most of the commonly used parametric distributions and thus is a rich and flexible nonparametric class of distributions. Further, the MLE exists and can be computed with readily available algorithms. Thus, no tuning parameter, such as a bandwidth, i...
متن کاملClustering with mixtures of log-concave distributions
The EM algorithm is a popular tool for clustering observations via a parametric mixture model. Two disadvantages of this approach are that its success depends on the appropriateness of the assumed parametric model, and that each model requires a different implementation of the EM algorithm based on model-specific theoretical derivations. We show how this algorithm can be extended to work with t...
متن کاملComparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کاملLearning Multivariate Log-concave Distributions
We study the problem of estimating multivariate log-concave probability density functions. We prove the first sample complexity upper bound for learning log-concave densities on Rd, for all d ≥ 1. Prior to our work, no upper bound on the sample complexity of this learning problem was known for the case of d > 3. In more detail, we give an estimator that, for any d ≥ 1 and ǫ > 0, draws Õd ( (1/ǫ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009